Skip to content

SBSAT RC

Reading Comprehension (SBSAT)

Test

ModelUnseen Reader Balanced AccuracyUnseen Text Balanced AccuracyUnseen Text and Reader Balanced AccuracyAverage Balanced AccuracyUnseen Reader AUROCUnseen Text AUROCUnseen Text and Reader AUROCAverage AUROC
Majority Class / Chance50.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.0
Reading Speed51.1 ± 1.850.9 ± 0.449.9 ± 0.150.2 ± 0.952.0 ± 2.150.8 ± 0.352.4 ± 1.050.8 ± 1.6
Text-Only Roberta61.5 ± 1.851.2 ± 0.750.4 ± 0.556.1 ± 1.167.1 ± 1.443.7 ± 4.546.0 ± 2.355.9 ± 2.3
Logistic Regression [meziere2023using]53.6 ± 1.551.3 ± 0.749.9 ± 1.051.8 ± 0.953.7 ± 1.352.3 ± 0.947.8 ± 3.152.3 ± 1.0
SVM [hollenstein2023zuco]50.7 ± 0.650.3 ± 1.648.3 ± 0.750.2 ± 0.950.7 ± 0.650.3 ± 1.648.3 ± 0.750.2 ± 0.9
Random Forest [makowski2024detection]54.2 ± 0.951.3 ± 1.248.9 ± 1.552.1 ± 0.654.5 ± 0.951.6 ± 1.148.2 ± 0.952.3 ± 0.7
AhnRNN [ahn2020towards]50.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.0
AhnCNN [ahn2020towards]50.9 ± 0.451.3 ± 0.750.9 ± 0.851.1 ± 0.549.8 ± 2.052.7 ± 1.448.4 ± 3.250.8 ± 1.8
BEyeLSTM [reich_inferring_2022]50.9 ± 0.949.9 ± 0.948.5 ± 2.049.9 ± 0.451.6 ± 1.451.1 ± 1.348.9 ± 2.950.1 ± 0.5
PLM-AS [Yang2023PLMASPL]49.1 ± 0.750.7 ± 1.348.2 ± 1.449.5 ± 0.249.7 ± 1.649.9 ± 0.649.5 ± 3.649.5 ± 1.1
PLM-AS-RM [haller2022eye]51.2 ± 0.451.5 ± 1.251.2 ± 1.051.2 ± 0.753.0 ± 1.754.7 ± 2.254.2 ± 1.453.9 ± 1.1
RoBERTEye-W [Shubi2024Finegrained]55.6 ± 2.752.7 ± 2.653.9 ± 3.154.3 ± 2.559.9 ± 3.652.5 ± 4.956.1 ± 4.257.4 ± 3.7
RoBERTEye-F [Shubi2024Finegrained]55.7 ± 4.051.0 ± 1.452.5 ± 1.353.8 ± 2.458.7 ± 5.453.4 ± 2.651.8 ± 1.056.0 ± 2.7
MAG-Eye [Shubi2024Finegrained]60.6 ± 2.548.3 ± 2.446.6 ± 4.654.1 ± 1.965.6 ± 2.344.8 ± 4.342.0 ± 6.356.0 ± 2.1
PostFusion-Eye [Shubi2024Finegrained]53.9 ± 2.249.1 ± 0.951.0 ± 1.051.7 ± 1.157.9 ± 3.555.9 ± 4.052.7 ± 5.955.4 ± 2.6

Validation

ModelUnseen Reader Balanced AccuracyUnseen Text Balanced AccuracyUnseen Text and Reader Balanced AccuracyAverage Balanced AccuracyUnseen Reader AUROCUnseen Text AUROCUnseen Text and Reader AUROCAverage AUROC
Majority Class / Chance50.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.0
Reading Speed53.6 ± 1.750.5 ± 0.250.5 ± 0.452.4 ± 1.553.5 ± 1.949.4 ± 0.750.9 ± 1.552.2 ± 1.3
Text-Only Roberta63.5 ± 2.756.7 ± 3.555.6 ± 2.260.0 ± 2.367.6 ± 2.362.8 ± 5.261.5 ± 6.064.8 ± 0.4
Logistic Regression [meziere2023using]52.7 ± 1.452.8 ± 1.552.4 ± 2.452.5 ± 1.452.4 ± 1.851.4 ± 1.451.8 ± 3.151.9 ± 1.5
SVM [hollenstein2023zuco]52.1 ± 1.152.6 ± 1.152.9 ± 2.652.7 ± 1.252.1 ± 1.152.6 ± 1.152.9 ± 2.652.7 ± 1.2
Random Forest [makowski2024detection]53.1 ± 1.049.9 ± 2.354.1 ± 2.651.9 ± 1.355.1 ± 1.451.2 ± 2.254.9 ± 3.053.5 ± 1.4
AhnRNN [ahn2020towards]50.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.0
AhnCNN [ahn2020towards]50.8 ± 0.450.5 ± 0.748.5 ± 0.850.2 ± 0.354.5 ± 1.649.9 ± 1.550.9 ± 0.551.7 ± 1.2
BEyeLSTM [reich_inferring_2022]52.2 ± 1.450.1 ± 1.250.0 ± 1.251.0 ± 1.255.1 ± 2.351.9 ± 1.552.6 ± 1.852.7 ± 1.7
PLM-AS [Yang2023PLMASPL]50.1 ± 0.851.1 ± 1.548.2 ± 2.250.1 ± 1.149.2 ± 1.751.2 ± 3.350.1 ± 1.050.1 ± 1.7
PLM-AS-RM [haller2022eye]52.0 ± 0.251.2 ± 1.151.8 ± 0.851.6 ± 0.554.0 ± 1.852.0 ± 2.953.8 ± 1.053.2 ± 1.3
RoBERTEye-W [Shubi2024Finegrained]59.4 ± 4.650.5 ± 0.552.1 ± 1.454.2 ± 2.164.2 ± 4.950.8 ± 3.749.8 ± 2.057.3 ± 2.6
RoBERTEye-F [Shubi2024Finegrained]58.3 ± 3.455.8 ± 2.953.7 ± 2.857.2 ± 2.960.1 ± 4.358.4 ± 4.155.2 ± 3.159.3 ± 3.4
MAG-Eye [Shubi2024Finegrained]63.2 ± 2.953.2 ± 3.152.8 ± 2.856.8 ± 2.769.2 ± 2.949.1 ± 6.750.3 ± 7.160.2 ± 3.5
PostFusion-Eye [Shubi2024Finegrained]55.8 ± 3.149.5 ± 0.650.4 ± 0.252.9 ± 1.757.4 ± 5.151.4 ± 2.250.6 ± 1.255.3 ± 3.1