Skip to content

PoTeC RC

Reading Comprehension (PoTeC)

Test

ModelUnseen Reader Balanced AccuracyUnseen Text Balanced AccuracyUnseen Text and Reader Balanced AccuracyAverage Balanced AccuracyUnseen Reader AUROCUnseen Text AUROCUnseen Text and Reader AUROCAverage AUROC
Majority Class / Chance50.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.0
Reading Speed52.5 ± 1.250.7 ± 1.649.3 ± 3.651.3 ± 1.752.2 ± 1.551.1 ± 2.053.5 ± 6.151.9 ± 2.2
Text-Only Roberta57.6 ± 0.948.8 ± 1.750.3 ± 1.751.7 ± 1.362.5 ± 1.548.2 ± 1.848.2 ± 2.456.3 ± 1.6
Logistic Regression [meziere2023using]53.6 ± 0.953.9 ± 1.851.3 ± 2.152.9 ± 0.453.9 ± 1.855.9 ± 2.253.2 ± 0.654.1 ± 0.7
SVM [hollenstein2023zuco]51.3 ± 0.950.1 ± 0.750.6 ± 0.950.6 ± 0.751.3 ± 0.950.1 ± 0.750.6 ± 0.950.6 ± 0.7
Random Forest [makowski2024detection]55.8 ± 1.548.3 ± 1.448.2 ± 2.351.8 ± 1.259.2 ± 2.249.9 ± 1.746.1 ± 2.654.3 ± 1.2
AhnRNN [ahn2020towards]50.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.0
AhnCNN [ahn2020towards]50.0 ± 1.149.7 ± 1.249.5 ± 2.049.4 ± 0.951.4 ± 1.853.9 ± 2.647.4 ± 2.351.6 ± 2.0
BEyeLSTM [reich_inferring_2022]58.5 ± 1.151.6 ± 0.951.0 ± 1.653.2 ± 0.861.1 ± 1.951.5 ± 2.751.7 ± 4.254.7 ± 1.4
PLM-AS [Yang2023PLMASPL]54.6 ± 1.550.1 ± 0.650.0 ± 1.252.1 ± 0.858.3 ± 0.653.8 ± 0.653.7 ± 1.056.5 ± 0.3
PLM-AS-RM [haller2022eye]58.1 ± 1.049.0 ± 1.046.1 ± 1.753.9 ± 1.461.8 ± 1.153.2 ± 2.351.5 ± 4.759.0 ± 1.2
RoBERTEye-W [Shubi2024Finegrained]58.1 ± 1.049.7 ± 0.148.8 ± 0.752.6 ± 0.961.1 ± 0.551.7 ± 2.549.7 ± 3.256.8 ± 1.2
RoBERTEye-F [Shubi2024Finegrained]50.2 ± 0.250.0 ± 0.050.0 ± 0.050.0 ± 0.157.3 ± 2.752.7 ± 2.149.1 ± 3.754.7 ± 2.2
MAG-Eye [Shubi2024Finegrained]59.3 ± 1.149.8 ± 0.249.1 ± 0.854.2 ± 1.163.7 ± 1.548.7 ± 2.448.6 ± 3.958.3 ± 1.3
PostFusion-Eye [Shubi2024Finegrained]52.6 ± 1.650.1 ± 1.150.0 ± 1.651.3 ± 0.756.6 ± 2.051.2 ± 2.448.6 ± 2.653.0 ± 1.8

Validation

ModelUnseen Reader Balanced AccuracyUnseen Text Balanced AccuracyUnseen Text and Reader Balanced AccuracyAverage Balanced AccuracyUnseen Reader AUROCUnseen Text AUROCUnseen Text and Reader AUROCAverage AUROC
Majority Class / Chance50.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.0
Reading Speed50.0 ± 1.551.1 ± 1.546.7 ± 3.949.7 ± 1.949.5 ± 2.152.7 ± 1.745.2 ± 5.950.0 ± 2.6
Text-Only Roberta60.1 ± 1.950.0 ± 0.050.0 ± 0.055.3 ± 1.263.5 ± 2.456.8 ± 4.855.2 ± 5.359.8 ± 1.3
Logistic Regression [meziere2023using]52.1 ± 2.453.8 ± 2.151.8 ± 1.252.9 ± 0.452.7 ± 3.055.2 ± 2.850.5 ± 2.053.7 ± 0.8
SVM [hollenstein2023zuco]51.4 ± 1.254.8 ± 1.749.2 ± 2.052.1 ± 0.851.4 ± 1.254.8 ± 1.749.2 ± 2.052.1 ± 0.8
Random Forest [makowski2024detection]58.5 ± 1.551.8 ± 0.952.1 ± 1.055.2 ± 1.057.9 ± 1.454.9 ± 2.551.5 ± 2.456.1 ± 1.5
AhnRNN [ahn2020towards]50.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.0
AhnCNN [ahn2020towards]52.1 ± 0.452.0 ± 1.949.9 ± 0.951.7 ± 0.954.3 ± 1.254.7 ± 2.152.1 ± 1.654.4 ± 1.4
BEyeLSTM [reich_inferring_2022]58.6 ± 1.153.0 ± 1.752.8 ± 1.756.8 ± 0.562.1 ± 1.856.0 ± 2.460.1 ± 2.160.7 ± 1.2
PLM-AS [Yang2023PLMASPL]54.9 ± 0.551.0 ± 1.651.8 ± 1.053.3 ± 0.559.8 ± 1.051.4 ± 1.455.2 ± 2.456.2 ± 0.4
PLM-AS-RM [haller2022eye]59.4 ± 0.753.3 ± 1.551.6 ± 1.356.8 ± 0.763.0 ± 1.453.8 ± 2.250.4 ± 3.457.8 ± 0.6
RoBERTEye-W [Shubi2024Finegrained]60.5 ± 0.252.4 ± 1.552.7 ± 2.556.7 ± 0.863.1 ± 1.854.0 ± 1.054.8 ± 2.959.1 ± 0.3
RoBERTEye-F [Shubi2024Finegrained]51.0 ± 0.949.6 ± 0.450.1 ± 0.150.5 ± 0.556.5 ± 3.754.8 ± 2.554.6 ± 2.056.8 ± 1.0
MAG-Eye [Shubi2024Finegrained]59.9 ± 1.953.3 ± 2.251.5 ± 1.556.7 ± 1.065.4 ± 2.157.7 ± 1.858.7 ± 1.661.7 ± 0.8
PostFusion-Eye [Shubi2024Finegrained]54.8 ± 1.651.4 ± 1.251.8 ± 0.853.3 ± 1.056.9 ± 1.253.1 ± 2.257.5 ± 2.755.9 ± 1.6