Skip to content

IITBHGC CV

Claim Verification (IITBHGC)

Test

ModelUnseen Reader Balanced AccuracyUnseen Text Balanced AccuracyUnseen Text and Reader Balanced AccuracyAverage Balanced AccuracyUnseen Reader AUROCUnseen Text AUROCUnseen Text and Reader AUROCAverage AUROC
Majority Class / Chance49.5 ± 0.451.0 ± 0.950.6 ± 0.650.4 ± 0.349.5 ± 0.451.0 ± 0.950.6 ± 0.650.4 ± 0.3
Reading Speed55.6 ± 0.455.5 ± 1.055.8 ± 1.455.6 ± 0.656.5 ± 1.156.9 ± 1.458.0 ± 1.357.3 ± 0.7
Text-Only Roberta55.9 ± 2.649.8 ± 0.349.7 ± 0.752.5 ± 1.462.5 ± 2.755.1 ± 1.256.1 ± 5.458.8 ± 1.5
Logistic Regression [meziere2023using]53.3 ± 1.154.2 ± 1.555.7 ± 0.853.9 ± 1.053.2 ± 0.955.5 ± 1.655.6 ± 0.754.6 ± 1.1
SVM [hollenstein2023zuco]52.9 ± 0.855.0 ± 1.457.8 ± 1.454.5 ± 0.652.9 ± 0.855.0 ± 1.457.8 ± 1.454.5 ± 0.6
Random Forest [makowski2024detection]56.0 ± 1.652.2 ± 0.551.6 ± 2.153.4 ± 0.659.6 ± 0.854.0 ± 0.455.7 ± 1.456.4 ± 0.3
AhnRNN [ahn2020towards]50.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.051.2 ± 1.050.7 ± 0.550.6 ± 0.550.9 ± 0.7
AhnCNN [ahn2020towards]50.9 ± 1.051.4 ± 1.155.4 ± 2.351.8 ± 0.951.4 ± 1.252.9 ± 1.855.5 ± 2.252.9 ± 1.0
BEyeLSTM [reich_inferring_2022]51.6 ± 1.849.0 ± 1.451.7 ± 0.950.2 ± 1.153.3 ± 2.348.9 ± 1.453.1 ± 1.251.3 ± 1.2
PLM-AS [Yang2023PLMASPL]53.3 ± 2.348.8 ± 0.947.5 ± 2.050.6 ± 0.953.0 ± 2.450.4 ± 0.750.3 ± 4.251.4 ± 0.6
PLM-AS-RM [haller2022eye]52.6 ± 1.250.6 ± 0.850.6 ± 1.851.3 ± 0.855.6 ± 2.651.7 ± 1.151.3 ± 1.753.4 ± 1.5
RoBERTEye-W [Shubi2024Finegrained]55.9 ± 3.050.5 ± 1.153.1 ± 1.753.4 ± 2.164.3 ± 1.553.0 ± 2.054.5 ± 3.258.0 ± 2.2
RoBERTEye-F [Shubi2024Finegrained]53.4 ± 2.949.4 ± 0.649.8 ± 0.250.9 ± 0.762.2 ± 2.354.9 ± 0.658.8 ± 2.558.4 ± 1.1
MAG-Eye [Shubi2024Finegrained]57.1 ± 2.949.7 ± 1.250.8 ± 2.352.8 ± 1.565.3 ± 1.951.7 ± 2.455.2 ± 4.458.0 ± 2.0
PostFusion-Eye [Shubi2024Finegrained]51.9 ± 0.450.9 ± 0.152.6 ± 1.451.5 ± 0.360.2 ± 1.956.3 ± 2.659.0 ± 0.957.5 ± 1.4

Validation

ModelUnseen Reader Balanced AccuracyUnseen Text Balanced AccuracyUnseen Text and Reader Balanced AccuracyAverage Balanced AccuracyUnseen Reader AUROCUnseen Text AUROCUnseen Text and Reader AUROCAverage AUROC
Majority Class / Chance50.6 ± 0.551.4 ± 1.251.3 ± 1.151.0 ± 0.850.6 ± 0.551.4 ± 1.251.3 ± 1.151.0 ± 0.8
Reading Speed56.1 ± 0.856.1 ± 0.956.5 ± 1.556.2 ± 0.456.9 ± 1.556.0 ± 1.058.0 ± 1.357.0 ± 0.7
Text-Only Roberta60.0 ± 4.051.1 ± 1.248.9 ± 1.253.9 ± 1.866.1 ± 3.554.7 ± 1.355.2 ± 2.059.2 ± 1.9
Logistic Regression [meziere2023using]54.1 ± 1.554.4 ± 1.255.9 ± 2.254.6 ± 1.254.8 ± 1.856.2 ± 0.555.2 ± 2.255.2 ± 1.4
SVM [hollenstein2023zuco]57.6 ± 1.355.6 ± 1.254.6 ± 1.356.1 ± 0.657.6 ± 1.355.6 ± 1.254.6 ± 1.356.1 ± 0.6
Random Forest [makowski2024detection]60.0 ± 1.256.5 ± 0.855.3 ± 1.857.5 ± 0.863.7 ± 1.660.6 ± 2.057.1 ± 2.161.2 ± 1.4
AhnRNN [ahn2020towards]50.0 ± 0.050.0 ± 0.050.0 ± 0.050.0 ± 0.050.9 ± 0.750.9 ± 0.650.1 ± 0.150.8 ± 0.6
AhnCNN [ahn2020towards]53.7 ± 1.552.2 ± 0.353.7 ± 1.053.2 ± 0.657.5 ± 0.455.4 ± 0.755.6 ± 1.456.1 ± 0.3
BEyeLSTM [reich_inferring_2022]56.6 ± 0.952.9 ± 1.552.2 ± 0.454.0 ± 0.961.8 ± 0.755.3 ± 1.154.9 ± 0.957.5 ± 0.7
PLM-AS [Yang2023PLMASPL]52.6 ± 1.153.6 ± 1.851.7 ± 2.453.1 ± 1.054.0 ± 1.856.7 ± 3.451.8 ± 2.254.6 ± 2.2
PLM-AS-RM [haller2022eye]57.1 ± 2.950.7 ± 0.850.0 ± 1.053.2 ± 1.564.1 ± 3.350.6 ± 0.651.0 ± 2.856.1 ± 1.2
RoBERTEye-W [Shubi2024Finegrained]58.7 ± 3.654.0 ± 2.251.3 ± 1.355.5 ± 2.671.4 ± 2.359.4 ± 1.856.2 ± 0.963.9 ± 1.9
RoBERTEye-F [Shubi2024Finegrained]55.2 ± 4.249.7 ± 0.350.6 ± 0.651.6 ± 1.365.8 ± 3.155.8 ± 2.456.0 ± 2.959.5 ± 0.4
MAG-Eye [Shubi2024Finegrained]62.3 ± 4.252.0 ± 1.250.7 ± 1.655.7 ± 1.972.2 ± 1.456.0 ± 0.955.3 ± 2.062.9 ± 1.1
PostFusion-Eye [Shubi2024Finegrained]51.9 ± 0.750.9 ± 0.853.4 ± 0.751.6 ± 0.559.3 ± 1.156.7 ± 2.060.0 ± 1.257.7 ± 0.6