Skip to content

models_ml

DummyClassifierMLModel

Bases: BaseMLModel

Dummy classifier that uses null features and a dummy classifier from sklearn.

Source code in src/models/models_ml.py
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
@register_model
class DummyClassifierMLModel(BaseMLModel):
    """
    Dummy classifier that uses null features and a dummy classifier from sklearn.
    """

    def __init__(
        self,
        model_args: DummyClassifierMLArgs,
        trainer_args: TrainerML,
        data_args=DataArgs,
    ):
        super().__init__(
            model_args=model_args, trainer_args=trainer_args, data_args=data_args
        )

    def fit(self, dm) -> None:
        # Dummy classifier: generate zero features just for demonstration
        train_batches = self.shared_fit(dm)
        features_list = []
        y_true_list = []
        for train_batch in train_batches:
            features = torch.zeros((train_batch.labels.shape[0], 1)).to('cpu')
            features_list.append(features)
            y_true_list.append(train_batch.labels)

        features = torch.cat(features_list, dim=0).numpy()
        y_true = torch.cat(y_true_list, dim=0).numpy()
        self.classifier.fit(features, y_true)

    def model_specific_predict(
        self, dev_batches: list
    ) -> tuple[list[torch.Tensor], list[torch.Tensor]]:
        preds_list: list[torch.Tensor] = []
        probs_list: list[torch.Tensor] = []
        for dev_batch in dev_batches:
            features = torch.zeros((dev_batch.labels.shape[0], 1)).to('cpu').numpy()
            preds, probs = self._predict_with_fallback(features)
            preds_list.append(preds)
            probs_list.append(probs)
        return preds_list, probs_list

DummyRegressorMLModel

Bases: BaseMLModel

Dummy regressor that uses null features and a dummy regressor from sklearn.

Source code in src/models/models_ml.py
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
@register_model
class DummyRegressorMLModel(BaseMLModel):
    """
    Dummy regressor that uses null features and a dummy regressor from sklearn.
    """

    def __init__(
        self,
        model_args: DummyRegressorMLArgs,
        trainer_args: TrainerML,
        data_args=DataArgs,
    ):
        super().__init__(
            model_args=model_args, trainer_args=trainer_args, data_args=data_args
        )

    def fit(self, dm) -> None:
        # Dummy classifier: generate zero features just for demonstration
        train_batches = self.shared_fit(dm)
        features_list = []
        y_true_list = []
        for train_batch in train_batches:
            features = torch.zeros((train_batch.labels.shape[0], 1)).to('cpu')
            features_list.append(features)
            y_true_list.append(train_batch.labels)

        features = torch.cat(features_list, dim=0).numpy()
        y_true = torch.cat(y_true_list, dim=0).numpy()
        self.classifier.fit(features, y_true)

    def model_specific_predict(
        self, dev_batches: list
    ) -> tuple[list[torch.Tensor], list[None]]:
        preds_list: list[torch.Tensor] = []
        probs_list: list[None] = []
        for dev_batch in dev_batches:
            features = torch.zeros((dev_batch.labels.shape[0], 1)).to('cpu').numpy()
            preds = torch.tensor(self.classifier.predict(features))
            probs = None
            preds_list.append(preds)
            probs_list.append(probs)
        return preds_list, probs_list

LinearRegressionRegressorMLModel

Bases: BaseMLModel

Logistic Regression classifier.

Source code in src/models/models_ml.py
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
@register_model
class LinearRegressionRegressorMLModel(BaseMLModel):
    """
    Logistic Regression classifier.
    """

    def __init__(
        self,
        model_args: LinearRegressionArgs,
        trainer_args: TrainerML,
        data_args=DataArgs,
    ):
        super().__init__(
            model_args=model_args, trainer_args=trainer_args, data_args=data_args
        )

LogisticRegressionMLModel

Bases: BaseMLModel

Logistic Regression classifier.

Source code in src/models/models_ml.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
@register_model
class LogisticRegressionMLModel(BaseMLModel):
    """
    Logistic Regression classifier.
    """

    def __init__(
        self,
        model_args: LogisticRegressionMLArgs,
        trainer_args: TrainerML,
        data_args=DataArgs,
    ):
        super().__init__(
            model_args=model_args, trainer_args=trainer_args, data_args=data_args
        )

RandomForestMLModel

Bases: BaseMLModel

RandomForest classifier.

Source code in src/models/models_ml.py
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
@register_model
class RandomForestMLModel(BaseMLModel):
    """
    RandomForest classifier.
    """

    def __init__(
        self,
        model_args: RandomForestMLArgs,
        trainer_args: TrainerML,
        data_args=DataArgs,
    ):
        super().__init__(
            model_args=model_args, trainer_args=trainer_args, data_args=data_args
        )

RandomForestRegressorMLModel

Bases: BaseMLModel

RandomForest Regressor.

Source code in src/models/models_ml.py
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
@register_model
class RandomForestRegressorMLModel(BaseMLModel):
    """
    RandomForest Regressor.
    """

    def __init__(
        self,
        model_args: RandomForestRegressorMLArgs,
        trainer_args: TrainerML,
        data_args=DataArgs,
    ):
        super().__init__(
            model_args=model_args, trainer_args=trainer_args, data_args=data_args
        )

SupportVectorMachineMLModel

Bases: BaseMLModel

Support Vector Machine classifier.

Source code in src/models/models_ml.py
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
@register_model
class SupportVectorMachineMLModel(BaseMLModel):
    """
    Support Vector Machine classifier.
    """

    def __init__(
        self,
        model_args: SupportVectorMachineMLArgs,
        trainer_args: TrainerML,
        data_args=DataArgs,
    ):
        super().__init__(
            model_args=model_args, trainer_args=trainer_args, data_args=data_args
        )

SupportVectorRegressorMLModel

Bases: BaseMLModel

Support Vector Machine regressor.

Source code in src/models/models_ml.py
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
@register_model
class SupportVectorRegressorMLModel(BaseMLModel):
    """
    Support Vector Machine regressor.
    """

    def __init__(
        self,
        model_args: SupportVectorRegressorMLArgs,
        trainer_args: TrainerML,
        data_args=DataArgs,
    ):
        super().__init__(
            model_args=model_args, trainer_args=trainer_args, data_args=data_args
        )

XGBoostMLModel

Bases: BaseMLModel

XGBoost classifier.

Source code in src/models/models_ml.py
102
103
104
105
106
107
108
109
110
111
112
113
@register_model
class XGBoostMLModel(BaseMLModel):
    """
    XGBoost classifier.
    """

    def __init__(
        self, model_args: XGBoostMLArgs, trainer_args: TrainerML, data_args=DataArgs
    ):
        super().__init__(
            model_args=model_args, trainer_args=trainer_args, data_args=data_args
        )

XGBoostRegressorMLModel

Bases: BaseMLModel

XGBoost regressor.

Source code in src/models/models_ml.py
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
@register_model
class XGBoostRegressorMLModel(BaseMLModel):
    """
    XGBoost regressor.
    """

    def __init__(
        self,
        model_args: XGBoostRegressorMLArgs,
        trainer_args: TrainerML,
        data_args=DataArgs,
    ):
        super().__init__(
            model_args=model_args, trainer_args=trainer_args, data_args=data_args
        )