24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915 | class SBSATProcessor(DatasetProcessor):
"""Processor for SBSAT dataset"""
N_QUESTION_DUPLICATES = 5
# Encoding fixes
ENCODING_MAP = {
'\x92': "'",
'\x93': '"',
'\x94': '"',
'\x97': '—',
}
# AOI label corrections: (paragraph_id, aoi_id, correct_label)
AOI_FIXES = [
# https://github.com/ahnchive/SB-SAT/blob/master/stimuli/reading%20screenshot/reading-dickens-3.png
('reading-dickens-3', 45, 'Sempere &'),
# https://github.com/ahnchive/SB-SAT/blob/master/stimuli/reading%20screenshot/reading-dickens-5.png
('reading-dickens-5', 112, 'Mr.'),
('reading-dickens-5', 113, 'Dickens'),
# https://github.com/ahnchive/SB-SAT/blob/master/stimuli/reading%20screenshot/reading-flytrap-3.png
('reading-flytrap-3', 30, 'Burdon-'),
('reading-flytrap-3', 31, "Sanderson's"),
# https://github.com/ahnchive/SB-SAT/blob/master/stimuli/reading%20screenshot/reading-genome-2.png
('reading-genome-2', 70, 'species—'),
('reading-genome-2', 71, 'in'),
# https://github.com/ahnchive/SB-SAT/blob/master/stimuli/reading%20screenshot/reading-genome-3.png
('reading-genome-3', 45, 'gee-'),
('reading-genome-3', 46, 'whiz,'),
]
# Linguistic feature column renames
FEATURE_RENAMES = {
'POS': 'universal_pos',
'Length': 'word_length_no_punctuation',
'Wordfreq_Frequency': 'wordfreq_frequency',
'subtlex_Frequency': 'subtlex_frequency',
'Reduced_POS': 'ptb_pos',
'Head_word_idx': 'head_word_index',
'Dependency_Relation': 'dependency_relation',
'Entity': 'entity_type',
'gpt2_Surprisal': 'gpt2_surprisal',
'Head_Direction': 'head_direction',
'Is_Content_Word': 'is_content_word',
'n_Lefts': 'left_dependents_count',
'n_Rights': 'right_dependents_count',
'Distance2Head': 'distance_to_head',
}
def add_ia_report_features_to_fixation_data(
self,
ia_df: pd.DataFrame,
fix_df: pd.DataFrame,
) -> tuple[pd.DataFrame, pd.DataFrame]:
"""
Merge per-IA (interest area) features into the fixation-level data.
Result: one row per fixation, enriched with IA-level attributes.
"""
# Prepare IA dataframe
ia_df = self._prepare_ia_dataframe(ia_df)
# Prepare fixation dataframe
fix_df = self._prepare_fixation_dataframe(fix_df, ia_df)
# Load and merge labels
ia_df, fix_df = self._merge_trial_labels(ia_df, fix_df)
# Add IA features
ia_df = self._add_ia_features(ia_df)
# Compute linguistic features
ia_df = self._add_linguistic_features(ia_df)
# Finalize and merge
fix_df, ia_df = self._finalize_dataframes(ia_df, fix_df)
return fix_df, ia_df
def _prepare_ia_dataframe(self, ia_df: pd.DataFrame) -> pd.DataFrame:
"""Prepare IA dataframe with metadata and reindexing"""
ia_df = ia_df.copy()
ia_df['old_original_word_index'] = ia_df['word_index']
# extract story metadata
ia_df['story_name'] = ia_df['unique_paragraph_id'].str.extract(
r'reading-(.*)-\d+'
)[0]
ia_df['page_number'] = (
ia_df['unique_paragraph_id'].str.extract(r'reading-.*-(\d+)')[0].astype(int)
)
# sort and reconstruct full paragraphs
ia_df = ia_df.sort_values(
by=[
'participant_id',
'story_name',
'page_number',
'old_original_word_index',
]
)
full_paragraphs = ia_df.groupby(['participant_id', 'story_name']).agg(
{
'word': lambda x: ' '.join(x),
'old_original_word_index': lambda x: list(x),
}
)
ia_df = ia_df.merge(
full_paragraphs,
how='left',
on=['participant_id', 'story_name'],
suffixes=('', '_combined'),
).rename(
columns={
'word_combined': 'full_paragraph',
'old_original_word_index_combined': 'full_old_original_word_index',
}
)
# Update paragraph ID and reindex
ia_df['unique_paragraph_id'] = ia_df['story_name']
ia_df = self._reindex_by_group(
ia_df,
['participant_id', 'unique_paragraph_id'],
['page_number', 'word_index'],
'word_index',
)
# Rename IA ID column
ia_df = ia_df.rename(
columns={
Fields.IA_DATA_IA_ID_COL_NAME: Fields.FIXATION_REPORT_IA_ID_COL_NAME
}
)
return ia_df
def _prepare_fixation_dataframe(
self, fix_df: pd.DataFrame, ia_df: pd.DataFrame
) -> pd.DataFrame:
"""Prepare fixation dataframe with metadata and reindexing"""
fix_df = fix_df.copy()
fix_df['old_original_word_index'] = fix_df['word_index']
# Extract story metadata
fix_df['story_name'] = fix_df['unique_paragraph_id'].str.extract(
r'reading-(.*)-\d+'
)[0]
fix_df['page_number'] = (
fix_df['unique_paragraph_id']
.str.extract(r'reading-.*-(\d+)')[0]
.astype(int)
)
fix_df['unique_paragraph_id'] = fix_df['story_name']
# Reset index and reindex by group
fix_df = fix_df.reset_index().rename(
columns={'index': 'original_fixation_index'}
)
fix_df = self._reindex_by_group(
fix_df,
['participant_id', 'unique_paragraph_id'],
['page_number', 'original_fixation_index'],
'CURRENT_FIX_INDEX',
)
# Sort and merge full paragraphs
fix_df = fix_df.sort_values(
by=['participant_id', 'story_name', 'page_number', 'CURRENT_FIX_INDEX']
)
full_paragraphs = (
ia_df.groupby(['participant_id', 'story_name'])
.agg(
{
'word': lambda x: ' '.join(x),
'old_original_word_index': lambda x: list(x),
}
)
.reset_index()
)
fix_df = fix_df.merge(
full_paragraphs,
how='left',
on=['participant_id', 'story_name'],
suffixes=('', '_combined'),
).rename(
columns={
'word_combined': 'full_paragraph',
'old_original_word_index_combined': 'full_old_original_word_index',
}
)
return fix_df
def _reindex_by_group(
self,
df: pd.DataFrame,
groupby_cols: list[str],
sort_cols: list[str],
index_col: str,
) -> pd.DataFrame:
"""Reindex dataframe within groups"""
def reindex_group(group):
group = group.copy().sort_values(by=sort_cols)
group[index_col] = range(len(group))
return group
return df.groupby(groupby_cols, group_keys=False).apply(reindex_group)
def _add_ia_features(self, ia_df: pd.DataFrame) -> pd.DataFrame:
"""Add all IA-level features with default values"""
feature_defaults = [
'IA_FIRST_FIXATION_VISITED_IA_COUNT',
'TRIAL_IA_COUNT',
'IA_SELECTIVE_REGRESSION_PATH_DURATION',
'IA_LAST_RUN_FIXATION_COUNT',
'IA_TOP',
'IA_LAST_RUN_DWELL_TIME',
'IA_REGRESSION_OUT_FULL_COUNT',
'start_of_line',
'end_of_line',
'IA_LEFT',
'IA_LAST_FIXATION_DURATION',
'IA_REGRESSION_PATH_DURATION',
'IA_REGRESSION_OUT_COUNT',
'IA_FIRST_FIX_PROGRESSIVE',
'IA_RUN_COUNT',
'NEXT_SAC_DURATION',
]
# Add features with special calculations
ia_df['IA_REGRESSION_PATH_DURATION'] = ia_df['RPD_inc']
ia_df['IA_FIRST_RUN_FIXATION_COUNT'] = ia_df['FFID'].apply(
lambda x: 1 if x > 0 else 0
)
ia_df['IA_FIRST_FIXATION_TIME'] = ia_df['FFD']
ia_df['IA_FIRST_FIXATION_DURATION'] = ia_df['FFD']
ia_df['IA_REGRESSION_IN_COUNT'] = ia_df['TRC_in']
ia_df['IA_REGRESSION_IN'] = ia_df['TRC_in']
ia_df['NEXT_SAC_END_X'] = ia_df['NEXT_SAC_START_X'] + ia_df['SL_out']
ia_df['NEXT_SAC_END_Y'] = ia_df['NEXT_SAC_START_Y'] + ia_df['SL_out']
ia_df['IA_REGRESSION_OUT_COUNT'] = ia_df['TRC_out']
ia_df['IA_REGRESSION_OUT'] = ia_df['TRC_out']
ia_df['IA_DWELL_TIME'] = ia_df['TFT']
ia_df['IA_DWELL_TIME_%'] = ia_df.groupby('unique_trial_id')[
'IA_DWELL_TIME'
].transform(lambda x: x / x.sum())
ia_df['IA_FIRST_RUN_FIXATION_%'] = ia_df.groupby('unique_trial_id')[
'FFD'
].transform(lambda x: x / x.sum())
ia_df['PARAGRAPH_RT'] = ia_df.groupby(Fields.UNIQUE_PARAGRAPH_ID)[
'TFT'
].transform('sum')
ia_df['IA_FIXATION_COUNT'] = ia_df['TFC']
ia_df['IA_FIXATION_%'] = ia_df.groupby('unique_trial_id')['TFC'].transform(
lambda x: x / x.sum()
)
ia_df['IA_RUN_COUNT'] = ia_df['word_index']
ia_df['IA_FIRST_FIXATION_DURATION'] = ia_df['FFD']
# Add all default features
for feature in feature_defaults:
if feature not in ia_df.columns:
ia_df[feature] = 0
return ia_df
def _merge_trial_labels(
self,
ia_df: pd.DataFrame,
fix_df: pd.DataFrame,
) -> tuple[pd.DataFrame, pd.DataFrame]:
"""Merge trial labels and duplicate for multiple questions"""
# Load labels
labels_df = pd.read_csv('data/SBSAT/labels/18sat_trialfinal.csv').rename(
columns={
'RECORDING_SESSION_LABEL': Fields.SUBJECT_ID,
'page_name': Fields.UNIQUE_PARAGRAPH_ID,
}
)
# Drop conflicting columns from fixation data
fix_df = fix_df.drop(columns=['correct_answer', 'answer'], errors='ignore')
# Duplicate both dataframes for multiple questions
fix_df = self._duplicate_df(fix_df, self.N_QUESTION_DUPLICATES)
fix_df['unique_trial_id'] = (
fix_df['participant_id'].astype(str)
+ '_'
+ fix_df['unique_paragraph_id'].astype(str)
+ '_'
+ fix_df['question_index'].astype(str)
)
# Prepare labels
labels_df = labels_df.loc[labels_df['correct_answer'] != -99].copy()
labels_df['question_index'] = labels_df['unique_paragraph_id'].apply(
lambda x: int(x.split('-')[-1])
)
labels_df[Fields.UNIQUE_PARAGRAPH_ID] = labels_df['unique_paragraph_id'].apply(
lambda x: x.split('-')[1]
)
labels_df.drop('page', axis=1, inplace=True, errors='ignore')
# Merge fixation labels
merge_keys = {'book', 'participant_id', 'question_index'}
drop_keys = (
(set(fix_df.columns) & set(labels_df.columns))
- merge_keys
- {'correct_answer', 'answer'}
)
fix_df = fix_df.merge(
labels_df.drop(columns=list(drop_keys)).drop_duplicates(),
on=list(merge_keys),
how='left',
validate='many_to_one',
)
# Prepare and merge IA labels
ia_df = self._duplicate_df(ia_df, self.N_QUESTION_DUPLICATES)
ia_df['unique_trial_id'] = (
ia_df['participant_id'].astype(str)
+ '_'
+ ia_df['unique_paragraph_id'].astype(str)
+ '_'
+ ia_df['question_index'].astype(str)
)
ia_df['book_name'] = ia_df['story_name']
ia_df['page'] = ia_df['page_number']
merge_keys = {'book_name', 'participant_id', 'question_index'}
drop_keys = (
(set(ia_df.columns) & set(labels_df.columns))
- merge_keys
- {'correct_answer', 'answer'}
)
ia_df = ia_df.merge(
labels_df.drop(columns=list(drop_keys)).drop_duplicates(),
on=list(merge_keys),
how='left',
validate='many_to_one',
)
# Merge additional labels
_labels_df = pd.read_csv('data/SBSAT/labels/18sat_labels.csv').rename(
columns={
'subj': Fields.SUBJECT_ID,
'page_name': Fields.UNIQUE_PARAGRAPH_ID,
'book': 'book_name',
}
)
merge_keys = {'book_name', 'participant_id'}
for df in [fix_df, ia_df]:
drop_keys = (
(set(df.columns) & set(_labels_df.columns))
- merge_keys
- {'correct_answer', 'answer'}
)
df_merged = df.merge(
_labels_df.drop(columns=list(drop_keys)).drop_duplicates(),
on=list(merge_keys),
how='left',
)
if df is fix_df:
fix_df = df_merged
else:
ia_df = df_merged
return ia_df, fix_df
def _duplicate_df(self, df: pd.DataFrame, n_duplicates: int) -> pd.DataFrame:
"""Duplicate dataframe with question_index"""
df_list = [
df.copy().assign(question_index=i) for i in range(1, n_duplicates + 1)
]
return pd.concat(df_list, ignore_index=True)
def _add_linguistic_features(self, ia_df: pd.DataFrame) -> pd.DataFrame:
"""Add linguistic features using spacy and language models"""
# Initialize models
logger.info('Initializing linguistic models...')
surp_extractor = get_surp_extractor(
extractor_type=SurpExtractorType.CAT_CTX_LEFT, model_name='gpt2'
)
nlp = spacy.load('en_core_web_sm')
# Process groups
logger.info('Computing linguistic features...')
groups = list(ia_df.groupby('unique_trial_id'))
metrics_list = [
self._process_linguistic_group(group, surp_extractor, nlp)
for _, group in tqdm(groups, desc='Extracting features')
]
# Combine and prepare metrics
metrics_df = pd.concat(metrics_list, ignore_index=True)
metrics_df = self._duplicate_df(metrics_df, self.N_QUESTION_DUPLICATES)
metrics_df['unique_trial_id'] = (
metrics_df['unique_trial_id']
+ '_'
+ metrics_df['question_index'].astype(str)
)
# Merge with IA data
ia_df['IA_ID'] = ia_df['word_index']
merge_keys = {'unique_trial_id', 'IA_ID'}
drop_keys = (set(ia_df.columns) & set(metrics_df.columns)) - merge_keys
ia_df = ia_df.merge(
metrics_df.drop(columns=list(drop_keys) + ['Morph']).drop_duplicates(),
on=list(merge_keys),
how='left',
validate='one_to_one',
)
# Rename linguistic features
ia_df = ia_df.rename(columns=self.FEATURE_RENAMES)
return ia_df
def _process_linguistic_group(
self, group: pd.DataFrame, surp_extractor, nlp
) -> pd.DataFrame:
"""Process a single group for linguistic features"""
words = list(group['word'])
sentence = ' '.join(words)
metrics = get_metrics(
target_text=sentence,
surp_extractor=surp_extractor,
parsing_model=nlp,
parsing_mode='re-tokenize',
add_parsing_features=True,
language='en',
)
metrics['unique_trial_id'] = (
f'{group["participant_id"].iloc[0]}_{group["unique_paragraph_id"].iloc[0]}'
)
metrics['IA_ID'] = list(group['word_index'])
metrics['CURRENT_FIX_INTEREST_AREA_INDEX'] = list(group['word_index'])
return metrics
def _finalize_dataframes(
self, ia_df: pd.DataFrame, fix_df: pd.DataFrame
) -> tuple[pd.DataFrame, pd.DataFrame]:
"""Finalize both dataframes with computed features"""
# Add derived features to IA data
ia_df['word_length'] = ia_df['word'].apply(len)
ia_df['total_skip'] = ia_df['FFD'].apply(lambda x: x > 0)
ia_df['TRIAL_IA_COUNT'] = ia_df.groupby('unique_trial_id')[
'unique_trial_id'
].transform('count')
ia_df['RC'] = (ia_df['answer'] == ia_df['correct_answer']).astype(int)
ia_df = ia_df[~ia_df['RC'].isna()]
ia_df['binary_difficulty'] = (
ia_df['difficulty'] > ia_df['difficulty'].median()
).astype(int)
ia_df['difficulty'] = ia_df['difficulty'].astype(float)
ia_df['IA_FIXATION_%'] = ia_df.groupby('unique_trial_id')[
'IA_FIXATION_COUNT'
].transform(lambda x: x / np.sum(x) if np.sum(x) > 0 else 0)
ia_df['CURRENT_FIX_NEAREST_INTEREST_AREA_DISTANCE'] = 0
ia_df['CURRENT_FIX_INTEREST_AREA_INDEX'] = ia_df['IA_ID']
ia_df['NEXT_FIX_INTEREST_AREA_INDEX'] = (
ia_df['CURRENT_FIX_INTEREST_AREA_INDEX'].shift(-1).fillna(-1).astype(int)
)
ia_df['paragraph'] = ia_df.groupby('unique_trial_id')['word'].transform(
lambda x: ' '.join(x)
)
ia_df['IA_SKIP'] = (ia_df['FPF'] > 0).astype(int)
ia_df['IA_FIRST_RUN_DWELL_TIME'] = ia_df['FPRT']
fix_df['CURRENT_FIX_INTEREST_AREA_INDEX'] = (
fix_df['word_index'].fillna(-1).astype(int)
)
fix_df['NEXT_FIX_INTEREST_AREA_INDEX'] = (
fix_df['CURRENT_FIX_INTEREST_AREA_INDEX'].shift(-1).fillna(-1).astype(int)
)
# Map trial-level features to fixation data
for col in ['RC', 'difficulty', 'binary_difficulty']:
trial_values = ia_df.groupby('unique_trial_id')[col].first()
fix_df[col] = fix_df['unique_trial_id'].map(trial_values)
fix_df['difficulty'] = fix_df['difficulty'].astype(float)
# Prepare for merge
merge_keys = set(
self.data_args.groupby_columns + [Fields.FIXATION_REPORT_IA_ID_COL_NAME]
)
dup_cols = (set(fix_df.columns) & set(ia_df.columns)) - merge_keys
_ia_df = ia_df.drop(columns=list(dup_cols))
# Clean problematic columns
if (
'normalized_part_ID' in fix_df.columns
and fix_df['normalized_part_ID'].isna().any()
):
logger.info('Dropping normalized_part_ID due to NaN values')
fix_df = fix_df.drop(columns='normalized_part_ID')
# Merge fixations with IA features
enriched_fix_df = fix_df.merge(
_ia_df, on=list(merge_keys), how='left', validate='many_to_one'
)
# Remove duplicate groupby columns if present
if len(set(self.data_args.groupby_columns)) != len(
self.data_args.groupby_columns
):
logger.warning('Removing duplicate groupby_columns')
seen = set()
self.data_args.groupby_columns = [
x
for x in self.data_args.groupby_columns
if not (x in seen or seen.add(x))
]
# Add word count per trial
num_of_words_in_trials_series = _ia_df.groupby(
self.data_args.groupby_columns
).apply(len)
num_of_words_in_trials_series.name = 'num_of_words_in_trial'
enriched_fix_df = enriched_fix_df.merge(
num_of_words_in_trials_series,
on=self.data_args.groupby_columns,
how='left',
validate='many_to_one',
)
return enriched_fix_df, ia_df
def compute_word_level_reading_measures(
self,
fix_df: pd.DataFrame,
stim_df: pd.DataFrame,
) -> tuple[pd.DataFrame, pd.DataFrame]:
"""Compute word-level reading measures from fixation data"""
stim_df = stim_df.copy()
stim_df['word_index'] = stim_df['word_number'] - 1
results = []
for text_name in tqdm(
fix_df['unique_paragraph_id'].unique(),
desc='Computing word-level reading measures',
):
if text_name.startswith('question'):
continue
logger.info(f'Processing text: {text_name}')
aoi_df = stim_df[stim_df['filename'] == f'{text_name}.png']
# Build text strings list
_text_strs = ['previous_PAGE', 'next_PAGE', 'GO_TO_QUESTION'] + list(
aoi_df['word']
)[3 : -(aoi_df.index[-1] - aoi_df[aoi_df['word'].eq('Previous')].index)[0]]
text_strs = [s.replace("'", "'") for s in _text_strs]
# Special case for dickens-3
if text_name == 'reading-dickens-3':
text_strs = [
s.replace('Sempere', 'Sempere &') for s in text_strs if s != '&'
]
# Process each participant
tmp_df = fix_df[fix_df['unique_paragraph_id'] == text_name]
for participant_id in tqdm(
tmp_df['participant_id'].unique(), desc='Participants'
):
fixations_df = tmp_df[tmp_df['participant_id'] == participant_id]
result_df = self._compute_participant_measures(
text_name, participant_id, fixations_df, aoi_df
)
results.append(result_df)
return pd.concat(results, ignore_index=True), fix_df
def _compute_participant_measures(
self,
text_name: str,
participant_id: str,
fixations_df: pd.DataFrame,
aoi_df: pd.DataFrame,
) -> pd.DataFrame:
"""Compute reading measures for a single participant-text combination"""
# Add dummy fixation at end
fixations_df = pd.concat(
[
fixations_df,
pd.DataFrame(
[[0] * len(fixations_df.columns)], columns=fixations_df.columns
),
],
ignore_index=True,
)
# Initialize word dictionary with measures
text_aois = list(aoi_df['word_index'])
text_strs = list(aoi_df['word'])
word_dict = {}
for word_index, word in zip(text_aois, text_strs):
word_dict[int(word_index)] = {
'word': word,
'word_index': word_index,
'FFD': 0, # First Fixation Duration
'SFD': 0, # Single Fixation Duration
'FD': 0, # Fixation Duration
'FPRT': 0, # First Pass Reading Time
'FRT': 0, # First Run Time
'TFT': 0, # Total Fixation Time
'RRT': 0, # Re-Reading Time
'RPD_inc': 0, # Regression Path Duration (inclusive)
'RPD_exc': 0, # Regression Path Duration (exclusive)
'RBRT': 0, # Right-Bounded Reading Time
'Fix': 0,
'FPF': 0, # First Pass Fixation
'RR': 0, # Re-Reading
'FPReg': 0, # First Pass Regression
'TRC_out': 0, # Total Regression Count (outgoing)
'TRC_in': 0, # Total Regression Count (incoming)
'SL_in': 0, # Saccade Length (incoming)
'SL_out': 0, # Saccade Length (outgoing)
'TFC': 0, # Total Fixation Count
'FFID': 0, # First Fixation Index
'IA_FIRST_FIXATION_X': 0,
'IA_FIRST_FIXATION_Y': 0,
'IA_FIRST_FIXATION_PREVIOUS_FIX_IA': 0,
'IA_FIRST_FIXATION_RUN_INDEX': 0,
'IA_FIRST_FIXATION_PREVIOUS_IAREAS': 0,
'NEXT_SAC_START_X_tmp': 0,
'NEXT_SAC_START_Y_tmp': 0,
'NEXT_SAC_START_X': 0,
'NEXT_SAC_START_Y': 0,
}
# Process fixations
right_most_word = -1
cur_fix_word_idx = -1
next_fix_word_idx = -1
next_fix_dur = -1
for index, fixation in fixations_df.iterrows():
# Skip invalid fixations
try:
aoi = int(fixation['word_index'])
except (ValueError, TypeError):
continue
if fixation['word'] == '.':
continue
# Shift fixation window
last_fix_word_idx = cur_fix_word_idx
cur_fix_word_idx = next_fix_word_idx
cur_fix_dur = next_fix_dur
next_fix_word_idx = aoi - 1
next_fix_dur = fixation['CURRENT_FIX_DURATION']
# Skip zero-duration fixations
if next_fix_dur == 0:
next_fix_word_idx = cur_fix_word_idx
# Update rightmost position
if right_most_word < cur_fix_word_idx:
right_most_word = cur_fix_word_idx
# Skip uninitialized fixations
if cur_fix_word_idx == -1 or cur_fix_word_idx not in word_dict:
continue
# Update word measures
wd = word_dict[cur_fix_word_idx]
wd['TFT'] += int(cur_fix_dur)
wd['TFC'] += 1
if wd['FD'] == 0:
wd['FD'] += int(cur_fix_dur)
wd['FFID'] = index
wd['IA_FIRST_FIXATION_X'] = fixation['CURRENT_FIX_X']
wd['IA_FIRST_FIXATION_Y'] = fixation['CURRENT_FIX_Y']
wd['IA_FIRST_FIXATION_PREVIOUS_FIX_IA'] = last_fix_word_idx
wd['IA_FIRST_FIXATION_RUN_INDEX'] = index
wd['IA_FIRST_FIXATION_PREVIOUS_IAREAS'] = last_fix_word_idx
wd['NEXT_SAC_START_X_tmp'] += fixation['CURRENT_FIX_X']
wd['NEXT_SAC_START_Y_tmp'] += fixation['CURRENT_FIX_Y']
wd['NEXT_SAC_START_X'] = np.mean(wd['NEXT_SAC_START_X_tmp'])
wd['NEXT_SAC_START_Y'] = np.mean(wd['NEXT_SAC_START_Y_tmp'])
# First pass measures
if right_most_word == cur_fix_word_idx:
if wd['TRC_out'] == 0:
wd['FPRT'] += int(cur_fix_dur)
if last_fix_word_idx < cur_fix_word_idx:
wd['FFD'] += int(cur_fix_dur)
else:
if right_most_word < cur_fix_word_idx:
logger.warning('Rightmost word inconsistency detected')
if right_most_word in word_dict:
word_dict[right_most_word]['RPD_exc'] += int(cur_fix_dur)
# Regression tracking
if cur_fix_word_idx < last_fix_word_idx:
wd['TRC_in'] += 1
if cur_fix_word_idx > next_fix_word_idx:
wd['TRC_out'] += 1
# Right-bounded reading time
if cur_fix_word_idx == right_most_word:
wd['RBRT'] += int(cur_fix_dur)
# First run time
if wd['FRT'] == 0 and (
next_fix_word_idx != cur_fix_word_idx or next_fix_dur == 0
):
wd['FRT'] = wd['TFT']
# Saccade lengths
if wd['SL_in'] == 0:
wd['SL_in'] = cur_fix_word_idx - last_fix_word_idx
if wd['SL_out'] == 0:
wd['SL_out'] = next_fix_word_idx - cur_fix_word_idx
# Finalize measures
word_measures = []
for word_idx, wd in sorted(word_dict.items()):
if wd['FFD'] == wd['FPRT']:
wd['SFD'] = wd['FFD']
wd['RRT'] = wd['TFT'] - wd['FPRT']
wd['FPF'] = int(wd['FFD'] > 0)
wd['RR'] = int(wd['RRT'] > 0)
wd['FPReg'] = int(wd['RPD_exc'] > 0)
wd['Fix'] = int(wd['TFT'] > 0)
wd['RPD_inc'] = wd['RPD_exc'] + wd['RBRT']
wd['participant_id'] = participant_id
wd['unique_paragraph_id'] = text_name
word_measures.append(wd)
return pd.DataFrame(word_measures)
def fix_issues_with_aois_and_stimuli(
self, fix_df: pd.DataFrame, stim_df: pd.DataFrame
) -> pd.DataFrame:
"""Fix known issues with AOI labels and apply corrections"""
logger.info('Fixing AOI and stimulus issues...')
fix_df = fix_df.copy()
# Fix text encoding issues
for bad_char, good_char in self.ENCODING_MAP.items():
fix_df['CURRENT_FIX_INTEREST_AREA_LABEL'] = fix_df[
'CURRENT_FIX_INTEREST_AREA_LABEL'
].str.replace(bad_char, good_char, regex=False)
# Apply AOI label corrections
for para_id, aoi_id, correct_label in self.AOI_FIXES:
mask = (fix_df['unique_paragraph_id'] == para_id) & (
fix_df['CURRENT_FIX_INTEREST_AREA_ID'] == aoi_id
)
fix_df.loc[mask, 'CURRENT_FIX_INTEREST_AREA_LABEL'] = correct_label
# Add derived columns
fix_df['word'] = fix_df['CURRENT_FIX_INTEREST_AREA_LABEL']
fix_df['word_index'] = fix_df['CURRENT_FIX_INTEREST_AREA_ID']
fix_df['NEXT_FIX_INTEREST_AREA_INDEX'] = (
fix_df['word_index'].shift(-1).replace([np.inf, -np.inf], 0)
)
fix_df['PREVIOUS_FIX_INTEREST_AREA_INDEX'] = (
fix_df['word_index'].shift(1).replace([np.inf, -np.inf], 0)
)
fix_df['CURRENT_FIX_NEAREST_INTEREST_AREA_DISTANCE'] = 0
fix_df['NEXT_SAC_AMPLITUDE'] = 0
fix_df['NEXT_SAC_AVG_VELOCITY'] = 0
fix_df['NEXT_SAC_DURATION'] = 0
fix_df['start_of_line'] = 0
fix_df['end_of_line'] = 0
return fix_df
def get_column_map(self, data_type: DataType) -> dict[str, str]:
"""Get column mapping for SBSAT dataset"""
if data_type == DataType.IA:
return {
'FFD': 'IA_FIRST_FIXATION_DURATION',
'SFD': 'IA_SINGLE_FIXATION_DURATION',
'TFC': 'IA_FIXATION_COUNT',
'TRC_in': 'IA_REGRESSION_IN_COUNT',
'TRC_out': 'IA_REGRESSION_OUT_COUNT',
'FD': 'IA_FIRST_FIXATION_TIME',
}
elif data_type == DataType.FIXATIONS:
return {
'page_name': 'unique_paragraph_id',
'RECORDING_SESSION_LABEL': 'participant_id',
}
return {}
def get_columns_to_keep(self) -> list:
"""Get list of columns to keep after filtering"""
return []
def dataset_specific_processing(
self, data_dict: dict[str, pd.DataFrame]
) -> dict[str, pd.DataFrame]:
"""SBSAT-specific processing steps"""
# Filter to reading trials only
data_dict['fixations'] = data_dict['fixations'].loc[
data_dict['fixations']['unique_paragraph_id'].str.startswith('reading')
]
data_dict['ia'] = data_dict['ia'].loc[
data_dict['ia']['filename'].str.startswith('reading')
]
# Fix AOI and stimuli issues
data_dict['fixations'] = self.fix_issues_with_aois_and_stimuli(
data_dict['fixations'], data_dict['ia']
)
# Compute word-level reading measures
data_dict['ia'], data_dict['fixations'] = (
self.compute_word_level_reading_measures(
data_dict['fixations'], data_dict['ia']
)
)
# Add IA features to fixation data
data_dict['fixations'], data_dict['ia'] = (
self.add_ia_report_features_to_fixation_data(
data_dict['ia'], data_dict['fixations']
)
)
# Add missing features for both data types
for data_type in [DataType.IA, DataType.FIXATIONS]:
data_dict[data_type] = add_missing_features(
et_data=data_dict[data_type],
trial_groupby_columns=self.data_args.groupby_columns,
mode=data_type,
)
data_dict[data_type] = data_dict[data_type].assign(
normalized_ID=(
data_dict[data_type]['IA_ID'] - data_dict[data_type]['IA_ID'].min()
)
/ (
data_dict[data_type]['IA_ID'].max()
- data_dict[data_type]['IA_ID'].min()
),
)
# Merge questions
questions = (
pd.read_csv(
'data/SBSAT/stimuli/combined_stimulus.csv',
usecols=['stimulus_type', 'sequence_num', 'question'],
)
.rename(
columns={
'stimulus_type': 'book_name',
'sequence_num': 'question_index',
}
)
.drop_duplicates()
)
data_dict[data_type] = data_dict[data_type].merge(
questions,
on=['book_name', 'question_index'],
how='left',
validate='many_to_one',
)
# Compute trial-level features
trial_level_features = compute_trial_level_features(
raw_fixation_data=data_dict[DataType.FIXATIONS],
raw_ia_data=data_dict[DataType.IA],
trial_groupby_columns=self.data_args.groupby_columns,
processed_data_path=self.data_args.processed_data_path,
)
data_dict[DataType.TRIAL_LEVEL] = trial_level_features
# Replace missing values
data_dict = replace_missing_values(data_dict)
return data_dict
|