SVM
SupportVectorMachineMLArgs
dataclass
Bases: MLModelArgs
Model arguments for the Support Vector Machine (SVM) model.
Attributes:
| Name | Type | Description |
|---|---|---|
batch_size |
int
|
The batch size for training. |
use_fixation_report |
bool
|
Whether to use the fixation report. |
backbone |
str
|
The backbone model to use. |
sklearn_pipeline |
tuple
|
The scikit-learn pipeline for the model. |
sklearn_pipeline_param_clf__C |
float
|
Regularization parameter. Inverse of regularization strength. |
sklearn_pipeline_param_clf__kernel |
str
|
Specifies the kernel type to be used in the algorithm. |
sklearn_pipeline_param_clf__degree |
int
|
Degree of the polynomial kernel function ('poly'). Ignored by other kernels. |
sklearn_pipeline_param_clf__gamma |
str | float
|
Kernel coefficient for 'rbf', 'poly', and 'sigmoid'. |
sklearn_pipeline_param_clf__coef0 |
float
|
Independent term in kernel function. Relevant for 'poly' and 'sigmoid'. |
sklearn_pipeline_param_clf__shrinking |
bool
|
Whether to use the shrinking heuristic. |
sklearn_pipeline_param_clf__probability |
bool
|
Whether to enable probability estimates. |
sklearn_pipeline_param_clf__tol |
float
|
Tolerance for stopping criterion. |
sklearn_pipeline_param_clf__random_state |
int
|
Seed for shuffling the data. |
sklearn_pipeline_param_clf__class_weight |
str
|
Class weights (e.g., 'balanced'). |
sklearn_pipeline_param_scaler__with_mean |
bool
|
If True, center the data before scaling. |
sklearn_pipeline_param_scaler__with_std |
bool
|
If True, scale the data to unit variance. |
Source code in src/configs/models/ml/SVM.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | |
SupportVectorRegressorMLArgs
dataclass
Bases: MLModelArgs
Model arguments for the Support Vector Regressor (SVR) model.
Attributes:
| Name | Type | Description |
|---|---|---|
batch_size |
int
|
The batch size for training. |
use_fixation_report |
bool
|
Whether to use the fixation report. |
backbone |
str
|
The backbone model to use. |
sklearn_pipeline |
tuple
|
The scikit-learn pipeline for the model. |
sklearn_pipeline_param_reg__C |
float
|
Regularization parameter. |
sklearn_pipeline_param_reg__kernel |
str
|
Specifies the kernel type to be used in the algorithm. |
sklearn_pipeline_param_reg__degree |
int
|
Degree of the polynomial kernel function ('poly'). Ignored by other kernels. |
sklearn_pipeline_param_reg__gamma |
str | float
|
Kernel coefficient for 'rbf', 'poly', and 'sigmoid'. |
sklearn_pipeline_param_reg__coef0 |
float
|
Independent term in kernel function. Relevant for 'poly' and 'sigmoid'. |
sklearn_pipeline_param_reg__shrinking |
bool
|
Whether to use the shrinking heuristic. |
sklearn_pipeline_param_reg__tol |
float
|
Tolerance for stopping criterion. |
sklearn_pipeline_param_reg__epsilon |
float
|
Epsilon in the epsilon-SVR model. |
sklearn_pipeline_param_scaler__with_mean |
bool
|
If True, center the data before scaling. |
sklearn_pipeline_param_scaler__with_std |
bool
|
If True, scale the data to unit variance. |
Source code in src/configs/models/ml/SVM.py
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 | |