RandomForest
RandomForestMLArgs
dataclass
Bases: MLModelArgs
Model arguments for the RandomForest model.
Attributes:
| Name | Type | Description |
|---|---|---|
batch_size |
int
|
The batch size for training. |
use_fixation_report |
bool
|
Whether to use the fixation report. |
backbone |
str
|
The backbone model to use. |
pca_explained_variance_ratio_threshold |
float
|
Threshold for PCA explained variance ratio. |
sklearn_pipeline |
tuple
|
The scikit-learn pipeline for the model. |
sklearn_pipeline_param_clf__n_estimators |
int
|
Number of gradient boosted trees. |
sklearn_pipeline_param_clf__criterion |
str
|
The function to measure the quality of a split. |
sklearn_pipeline_param_clf__max_depth |
int
|
Maximum depth of a tree. |
sklearn_pipeline_param_clf__min_samples_split |
int | float
|
The minimum number of samples required to split an internal node. |
sklearn_pipeline_param_clf__min_samples_leaf |
int | float
|
The minimum number of samples required to be at a leaf node. |
sklearn_pipeline_param_clf__max_features |
str | int | float
|
The number of features to consider when looking for the best split. |
sklearn_pipeline_param_clf__n_jobs |
int
|
The number of jobs to run in parallel. |
Source code in src/configs/models/ml/RandomForest.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 | |
RandomForestRegressorMLArgs
dataclass
Bases: MLModelArgs
Model arguments for the RandomForest regressor model.
Attributes:
| Name | Type | Description |
|---|---|---|
batch_size |
int
|
The batch size for training. |
use_fixation_report |
bool
|
Whether to use the fixation report. |
backbone |
str
|
The backbone model to use. |
pca_explained_variance_ratio_threshold |
float
|
Threshold for PCA explained variance ratio. |
sklearn_pipeline |
tuple
|
The scikit-learn pipeline for the model. |
sklearn_pipeline_param_reg__n_estimators |
int
|
Number of trees in the forest. |
sklearn_pipeline_param_reg__max_depth |
int
|
Maximum depth of a tree. |
sklearn_pipeline_param_reg__min_samples_split |
int | float
|
The minimum number of samples required to split an internal node. |
sklearn_pipeline_param_reg__min_samples_leaf |
int | float
|
The minimum number of samples required to be at a leaf node. |
sklearn_pipeline_param_reg__max_features |
str | int | float
|
The number of features to consider when looking for the best split. |
sklearn_pipeline_param_reg__n_jobs |
int
|
The number of jobs to run in parallel. |
Source code in src/configs/models/ml/RandomForest.py
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 | |