LogisticRegression
LinearRegressionArgs
dataclass
Bases: MLModelArgs
Model arguments for the Linear Regression model.
Attributes:
| Name | Type | Description |
|---|---|---|
batch_size |
int
|
The batch size for training. |
use_fixation_report |
bool
|
Whether to use the fixation report. |
backbone |
str
|
The backbone model to use. |
sklearn_pipeline |
tuple
|
The scikit-learn pipeline for the model. |
sklearn_pipeline_param_regressor__fit_intercept |
bool
|
Whether to calculate the intercept for this model. |
sklearn_pipeline_param_scaler__with_mean |
bool
|
Whether to center data before scaling. |
sklearn_pipeline_param_scaler__with_std |
bool
|
Whether to scale data to unit variance. |
Source code in src/configs/models/ml/LogisticRegression.py
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 | |
LogisticRegressionMLArgs
dataclass
Bases: MLModelArgs
Model arguments for the Logistic Regression model.
Attributes:
| Name | Type | Description |
|---|---|---|
batch_size |
int
|
The batch size for training. |
use_fixation_report |
bool
|
Whether to use the fixation report. |
backbone |
str
|
The backbone model to use. |
sklearn_pipeline |
tuple
|
The scikit-learn pipeline for the model. |
sklearn_pipeline_param_clf__C |
float
|
Inverse of regularization strength. |
sklearn_pipeline_param_clf__fit_intercept |
bool
|
Whether to add an intercept to the decision function. |
sklearn_pipeline_param_clf__penalty |
str
|
Norm used in penalization. |
sklearn_pipeline_param_clf__solver |
str
|
Optimization algorithm. |
sklearn_pipeline_param_clf__random_state |
int
|
Seed for pseudo-random number generator. |
sklearn_pipeline_param_clf__max_iter |
int
|
Maximum number of solver iterations. |
sklearn_pipeline_param_clf__class_weight |
str
|
Class weight balancing strategy. |
sklearn_pipeline_param_scaler__with_mean |
bool
|
Whether to center data before scaling. |
sklearn_pipeline_param_scaler__with_std |
bool
|
Whether to scale data to unit variance. |
Source code in src/configs/models/ml/LogisticRegression.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | |